Constructions

Basic skills

1) Draw a line segment of 4 cm length using scale :

(Make sure that the starting point is at 0)

2) Draw a circle of given radius using compass :

3 cm

3) Draw a triangle when $\mathbf{3}$ sides are given :

- Draw base $A B$ measuring one of the given side lengths of the triangle.
- Set the width of your compass equal to another given side length.
- Place the tip of the compass on one of the end points of the side $A B$ (let's choose to place it on A) and draw an arc.
- Set the width of your compass equal to length of the third side.
- Place the tip of the compass on B and draw another arc which cuts the previously drawn arc at some point (say C).
- Join AC and BC.

4) Draw the perpendicular bisector of a line segment:

- Draw segment AB of given lenth.
- Take some distance in compass needle and pencil. (approximately more than half of $A B$)
- Keep compass needle on A and draw arcs above and below the line.
- Keep compass needle on B by maintaining the same distance between the needle and the pencil and draw arcs cutting the earlier arcs in points C and D.
- Join CD.

This is the perpendicular bisector of $A B$.

5) Draw a perpendicular from a point on the given line segment:

- Draw AB.
- Keeping compass needle at P draw two arcs on line AB.
- From point of intersection of one arc and $A B$, draw two arcs on the two sides of $A B$.
- From the other arc draw two more arcs cutting the earlier arcs in C and D.
- Join CD.

5) Draw a perpendicular from a point outside the given line segment:

- Draw AB. Draw point P outside AB.
- Taking P as center, draw two arcs on AB.
- From each of the arcs draw an arc on the other side of $A B$ with some fixed distance in compass needle and pencil, cutting each other in point C.
- Join PC.

$$
\mathrm{PC} \perp \mathrm{AB}
$$

6) Draw the angle bisector of a given angle :

- Draw angle ABC.
- From point B, draw arcs on $B A$ and $B C$.
- From each of these arcs draw an arc inside the angle keeping the same distance in compass.
- These arcs cut each other in point D.
- Join BD.
- BD is the angle bisector of angle ABC .
- Repeat the above process for angle PQR.

7) Draw a parallel line to a given line :

We want to draw a line parallel to $C D$, passing through point E.
For that, we have to construct an angle at E , which is equal to angle CDB.

- From point D, draw arcs on DC and DB with the same distance in the compass. Label these points as P and Q .
- With the same distance, draw two arcs from point E, one cutting ED at F, and the other bigger arc above AB.
- Measure the distance between points P and Q using compass.
- Maintain the same distance in compass, draw an arc from point F cutting the earlier bigger arc in G .
- Join EG.
- EG is parallel to CD.

Basics of Circles and Tangents

In how many ways can two circles be placed in a plane?
1.

2.

3.

4.

5

Common tangents of circles touching externally -

3 Common Tangents as shown in the figure.

Common tangents of circles that are separate from each other :

Lines A and B are called as Direct Common Tangents of the two circles.

Constructions : Exam Questions : 5 marks each

1) Draw a triangle whose sides measure 5, 6 and 8. Draw incircle.

Incircle is a circle that touches all sides of the triangle, and therefore it is inside the triangle.

- Draw triangle ABC.
- Draw angle bisectors of angles A and B.
- The point of intersection of angle bisectors is P .
- P is the center of incircle.
- From P, drop a perpendicular on AB.
- PD is the radius of incircle.
- With P as a center and radius as PD draw the incircle.

2) Draw Circumcircle:

Circumcircle is a circle that touches all vertices of the triangle. Therefore it is outside of the triangle.

- Draw triangle ABC.
- Draw perpendicular bisectors of sides $A B$ and $A C$.
- The point of intersection of perpendicular bisectors is P.
$-P$ is the center of circumcircle.
- Points A, B and C are at the same distance from P.
- With P as center and PA as radius draw a circle.
- This is the circumcircle of triangle ABC.

3) Draw a direct common tangent to two circles:

$$
r_{1}=2 \mathrm{~cm} \quad r_{2}=5 \mathrm{~cm}
$$

Find $r_{2}-r_{1}=5-2=3 \mathrm{~cm}$

- Join AB.
- Inside the bigger circle, with B as center, draw a circle with radius 3 cm .
- Bisect $A B$. X is the midpoint of $A B$.

With center X and radius $A X$, draw a semicircle to cut the third circle at R.

Join BR and produce it to meet the bigger circle at Q.

() NLF-Edugenie/2015-16

Draw AP parallel to BQ. Join PQ.
$P Q$ is the direct common tangent of the two circles.

Theorem of two chords of a circle :

We can take diameter as one of the chords.

This principle is used in the next two problems.
4) Find geometrically the value of $\sqrt{21}$

Rough Sketch :

Construction :
$-21=3 \times 7$

- Draw a line $A B C$ where $A B$ is 3 and $B C$ is 7 .
- Bisect AC to get O.
- With O as center and $A O$ as radius draw semicircle.
- Draw a perpendicular from point B to $A C$.
- That cuts the semicircle in point D.
- Distance BD $=\sqrt{21}$

5) Draw two line segments of lengths 4 cm and 6 cm . Find the mean proportion of these segments. Measure using scale the number corresponding to this mean proportion.
\qquad
a
\qquad
b

$$
\frac{a}{x}=\frac{x}{b} \quad x^{2}=a b
$$

Construction :

- Draw a line $A B C$ where $A B$ is 4 and $B C$ is 6 .
- Bisect AC to get O.
- With O as center and $A O$ as radius draw semicircle.
- Draw a perpendicular from point B to AC.
- That cuts the semicircle in point D.
- Length BD = Mean Proportion = 4.9 cm as measured by scale.

